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THE REMAINDER IN WEYL’S LAW
FOR HEISENBERG MANIFOLDS

YIANNIS N. PETRIDIS & JOHN A. TOTH

Abstract
We prove that the error term R(λ) in Weyl’s law is Oε(λ5/6+ε) for certain
three-dimensional Heisenberg manifolds. We also show that the L2-norm
of the Weyl error term integrated over the moduli space of left-invariant
Heisenberg metrics is � λ3/4+ε. We conjecture that R(λ) = Oε(λ3/4+ε) is
a sharp deterministic upper bound for Heisenberg three-manifolds.

1. Introduction

Let (Mn, g) be a compact Riemannian manifold of dimension n with
Laplace-Beltrami operator ∆ and spectral counting function

N(λ) := # {λj ∈ Spec(∆); λj ≤ λ}.

Then, a celebrated theorem of Hörmander [16] asserts that

N(λ) = cnvol(M)λn/2 +O(λ(n−1)/2),(1.1)

for some constant cn depending only on the dimension. Moreover, the
estimate in (1.1) is sharp as can be seen by considering the round sphere,
Sn. The question of determining the optimal bound for the error term

R(λ) := N(λ)− cnvol(M)λn/2
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in any given example is a difficult problem which depends on the prop-
erties of the associated geodesic flow, and is far from being understood
in detail.

Duistermaat and Guillemin improved the estimate on the error term
for a (generic) manifold in [8]. This result states that if the (Liouville)
measure of the set of unit-speed geodesics in S∗M is zero, then

R(λ) = o(λ(n−1)/2).

Perhaps the simplest class of examples satisfying the above conditions
are the completely integrable geodesic flows. Under mild non-degeneracy
assumptions, the existence of action-angle variables implies that on a
dense open subset of T ∗M the phase-space is foliated by Lagrangian
tori. For tori with rational slope, the geodesics are all periodic, whereas
for the irrational ones they are dense in the corresponding torus. Since
the conditions of [8] are therefore satisfied, it is natural to ask for explicit
improvements to the o(λn−1/2) error term for integrable geodesic flows.
There are very few explicit results regarding the error term R(λ). The
simplest example of an integrable geodesic flow on a surface is that of a
flat metric on a torus, T 2 = R

2/Z2. Here, there is a famous conjecture
of Hardy which asserts that for any ε > 0,

R(λ) = Oε(λ1/4+ε).(1.2)

There is much evidence to suggest that the bound in (1.2) is optimal.
Cramér [4] proved that averaging over the spectrum is consistent with
(1.2):

lim
T→∞

1
T 3/2

∫ T

0
|R(λ)|2 dλ = c > 0.

Hardy [14] proved that R(λ) = Ω(λ1/4). In [18], we showed that the
variance ofR(λ) integrated over the moduli space of flat tori is consistent
with the estimate (1.2). The same result has been recently reproved by
Hofmann and Iosevich with more elementary techniques [15].

Another case with completely integrable geodesic flow where im-
provements on Weyl’s law are known is the case of (generic) convex
surfaces of revolution. Colin de Verdière [5] showed that

R(λ) = O(λ1/3).

He also explained that the spectral counting problem in that case is
reduced to a certain lattice-point counting problem.
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The purpose of this article is to study Weyl’s law for 3-dimensional
Heisenberg manifolds. Recently, Butler [2, Sect. 5] showed that Heisen-
berg (and more general nilmanifolds) are completely integrable in the
sense of Liouville and nondegenerate. Moreover, one integral is C∞ but
not real-analytic, while the rest are algebraic. In fact, using earlier work
of Taimanov [20], Butler shows that because of topological constraints
on π1(M), one cannot construct analytic integrals for such manifolds.
In related work, Bolsinov and Taimanov [1] have constructed integrable
geodesic flows similar to the Heisenberg examples with the property
that on certain Lagrangian invariant tori the geodesic flow is a cat map.
Remarkably, these latter examples are shown to have positive topolog-
ical entropy. Heisenberg manifolds and, more generally, nilmanifolds
have been extensively studied in the context of isospectrality, because
of their rich structure, see [12], [11], [6], [7], [10].

In light of the integrability of geodesic flow on Heisenberg manifolds
and the result in (1.1) it is natural to ask for explicit improvements
in the Weyl error for such manifolds. To the best of our knowledge
no results or conjectures have been made regarding the remainder in
Weyl’s law for Heisenberg manifolds.

We now introduce notation and state our results. The 3-dimensional
Heisenberg group H1 consists of all matrices of the form

γ(x, y, t) =

 1 x t
0 1 y
0 0 1

 , x, y, t ∈ R.

We are interested in the spectrum of Heisenberg manifolds. These are
defined as (Γ\H1, g), where Γ is a discrete subgroup of H1 with compact
quotient and where g is a left H1-invariant metric. The classification
theorem in [12, 2.4] allows us to restrict out attention to subgroups Γr
of the following type

Γr = {γ(x, y, t) : x ∈ rZ, y ∈ Z, t ∈ Z} .
The left invariant metrics on H1 are determined by the induced inner
product on the Lie algebra H1. We can replace the metric g with φ∗g,
where φ is an inner automorphism, in such a way that the direct sum
split of the Lie algebra H1 = R

2+ z is orthogonal, see [12, 2.6(b)]. Here
z is the center of the Lie algebra and

R
2 ≡


 0 x 0

0 0 y
0 0 0

 , x, y ∈ R

 .
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With respect to this orthogonal split of H1 the metric g has the form

g =

 h11 h12 0
h12 h22 0
0 0 g3


where g3 > 0 and h11h22 − h212 > 0. For simplicity we only consider
the group Γ = Γ1. We also restrict to the case h12 = 0 and choose
parameters

ui = h−1ii , i = 1, 2, u3 = g−13 .(1.3)

We call this metric g(�u). This is a subvariety of the moduli space of
metrics but our methods can easily be extended to the whole moduli
space.

The spectrum of the Laplace operator associated with this metric
consists of two parts, see [12, p. 258]:

(1) Type I eigenvalues: these are eigenvalues of a torus T 2 with metric
given by the matrix (hij), i, j = 1, 2. We denote this part of the
spectrum by Σ1(u1, u2) := {4π2(u1m2 + u2n

2); m,n ∈ Z},
(2) Type II eigenvalues: Σ2(u1, u2, u3) := {µ(c, k) = 4π2u3c2+

2πu1u2c(2k+1); c, k ∈ Z, c > 0, k ≥ 0}. These eigenvalues have to
be counted with multiplicity as follows: for every c > 0, the µ(c, k)
is counted with multiplicity 2c and, if it happens that we get the
same eigenvalue from different pairs (c, k), the multiplicities are
added.

It is the Type II eigenvalues that contribute the main term in Weyl’s law.
In the deterministic result below both Type I and Type II eigenvalues
contribute to the improvement of Weyl’s law.

We start with an improvement of Hörmander’s bound for an ‘arith-
metic’ Heisenberg manifold, where

g1 =

 1 0 0
0 1 0
0 0 2π

 .

Theorem 1.1. The Heisenberg manifold M = (Γ1 \ H1, g1) has
Weyl Law

N(λ) = c3vol(M)λ3/2 +O(λ5/6+ε).
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Here c3 = (6π2)−1 and vol(M) =
√

2π, see [12, Prop. 2.9]. The
choice of g3 = 2π was made so that we can factor 2π in µ(c, k). There
is nothing particular about this choice, we could have used 4π, 6π etc.
and deal with other indefinite rational quadratic forms. We prove The-
orem 1.1 using Van der Corput’s method. The result in Theorem 1.1
is not optimal; see our forthcoming paper [3] for improvements and the
generalization to an arbitrary metric g. As we explain in Section 2, we
reduce the calculation to a lattice-point counting with weight for points
under the hyperbolas xy = λ, and below the line x = y. This is related
to the divisor problem∑

n≤x
τ(n) = x log x+ (2γ − 1)x+ ∆(x).

Here τ(n) is the number of divisors of n. Using Van der Corput’s
method we get the estimate ∆(x) = O(x1/3+ε), see [9, p. 69]. Im-
provements to this are known but they are far from the conjectured
bound, ∆(x) = Oε(x1/4+ε). This would follow from certain estimates
on exponential sums, see Remark 2.3, Section 2. The latter bound for
these sums, implies the bound R(λ) = Oε(λ3/4+ε) for the Weyl law on
M , see Section 2. We are thus lead to the following conjecture:

Conjecture 1.2. The pointwise estimate R(λ) = Oδ(λ3/4+δ) is
sharp for 3-dimensional Heisenberg manifolds.

We provide evidence for this conjecture in the following theorems.
Our second theorem gives a probabilistic estimate for the error R(λ) in
the Weyl law, which is consistent with Conjecture 1.2.

Theorem 1.3. Fix ε ∈ (0, 1) and let �u := (u1, u2, u3) ∈ I3 where
I := [1 − ε, 1 + ε]. Then, for any δ > 0, there exists a constant Cδ > 0
such that for λ ≥ λ0(δ),∫

I3

∣∣∣∣N(λ; �u)− 1
6π2

vol(M(�u))λ3/2
∣∣∣∣ 2 d�u ≤ Cδ λ

3/2+δ.

We take up the proof of Theorem 1.3 in Section 3. In Section 4,
we review the geometry of the geodesic flow on Heisenberg manifolds
and, in particular, we show that there exist 4-dimensional manifolds
of periodic orbits in S∗M . In Section 5, we use the existence of these
periodic manifolds together with a trace-formula argument, see [19], to
get the following lower bound for the spectral average of the Weyl error
function:



460 y.n. petridis & j.a. toth

Theorem 1.4. Fix �u = (1, 1, 1) and let λ ≥ λ0 > 0 be sufficiently
large. Then it follows that

1
λ

∫ 2λ

λ

∣∣∣∣N(τ) − 1
6π2

vol(M)τ3/2
∣∣∣∣ dτ  λ3/4.

Thus, Theorem 1.4 yields a lower average spectral bound that is
consistent with the bound in Conjecture 1.2.

Remark 1.5. Regarding Theorem 1.3, it is natural to ask whether
there is anything special about using the Lebesgue measure on the pa-
rameter space. In fact, it turns out that we can use Gaussian measures
concentrating around a fixed point in the moduli space to the order
λ−1/4. This point will be addressed in future work together with the is-
sue of universality, i.e., whether one could get the same type of estimates
for every (absolutely continuous) measure on the moduli space.

Remark 1.6. Ultimately one would like to prove Conjecture 1.2
for almost all left-invariant metrics on Γ \H1.
Remark 1.7. The situation for higher dimensional Heisenberg

manifolds is not the same. It seems that the estimates on R(λ) de-
pend on the diophantine properties of certain numbers depending on
the metric g. This is work in progress in the thesis of Khosravi.

2. Deterministic estimates: Proof of Theorem 1.1

With the choice of metric for Theorem 1.1 we see that the Type II
eigenvalues are 2πc(c+2l+1), where c > 0 and l ≥ 0. We rewrite these
numbers as 2πck, where k > c and c and k do not have the same parity.
Every eigenvalue has multiplicity 2c. To estimate NII(λ) the counting
function for Type II eigenvalues we need to count the pairs (c, k) with
k > c and with weight 2c and subtract the count of the pairs (c, k) with
k > c, k ≡ c(mod 2), again with weight 2c.

Set ψ(u) = u− [u]− 1/2. We set

N(t) =
∑

ck≤t,c<k
c.

In Figure 1 the lattice points in Z
2 that contribute to N(16) are

marked by the dots and x = k, y = c. It is important that we compute
two-term asymptotic expansions, since we must see the cancellation of
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Figure 1: Lattice points under xy = 16 and y = x.

the λ1 term that comes out of the counting function for Type I eigen-
values. We split the summation into two parts: the triangular region
0 ≤ c < k ≤ √

t and the horn-shaped region under the hyperbola ck = t
and to the right of the triangle. This gives:

N(t) =
∑

c<k≤√
t

c+
∑

ck≤t,k>√
t

c = A+B.(2.1)

It follows from the Euler summation formula [9, Satz 3, p. 187] that

∑
n≤u

na =
ua+1

a+ 1
− ψ(u)ua +O(ua−1).(2.2)
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Using (2.2), we easily get that

A =
∑
c≤√

t

c
(
[
√
t]− c

)
= [

√
t]
∑
c≤√

t

c−
∑
c≤√

t

c2

=
(√

t− 1/2− ψ(
√
t)
)(

t/2− ψ(
√
t)
√
t+O(1)

)
− t3/2

3
+ ψ(

√
t)t+O(

√
t)

=
t3/2

6
+
(
−1/4− ψ(

√
t)/2

)
t+O(

√
t).

On the other hand we see that

B =
∑
c≤√

t

c
∑

√
t<k≤t/c

1 =
∑
c≤√

t

c
(
t/c− ψ(t/c)−√

t+ ψ(
√
t)
)

(2.3)

= t[
√
t] +

(
ψ(

√
t)−√

t
) ∑
c≤√

t

c−
∑
c≤√

t

cψ(t/c)

=
t3/2

2
− t

2
+
tψ(

√
t)

2
−
∑
c≤√

t

cψ(t/c) +O(
√
t),

using the summation formula (2.2). We call the sum on (2.3) by E(t)
and we get

N(t) = A+B =
2
3
t3/2 − 3

4
t+ E(t) +O(t1/2).(2.4)

We now do the calculation on the lattice L={(x, y) ∈ Z
2, x ≡ y mod 2}.

We set

NL(t) =
∑

xy≤t,(x,y)∈L,y<x
y.

In Figure 2 the lattice points in L that contribute to NL(16) are
shown. As before we split the region into a triangle y < x ≤ √

t and
into the horn-shaped region to the right of the triangle. For technical
reasons we have to compute separately the contributions of the even x
and y and the odd x and y. Calling the four contributions Ae, Ao, Be
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Figure 2: Lattice points (x, y), x ≡ y (mod 2).

and Bo, we have NL(t) = Ae +Ao +Be +Bo. We compute:

Ae =
∑

y≤√
t,y∈2Z

y
∑

x∈2Z,y<x≤√
t

1 = 2
∑

y≤√
t/2

y
∑

y<x≤√
t/2

1

= 2
∑

y≤√
t/2

y
(
[
√
t/2]− y

)

= 2[
√
t/2]

(
t

8
− ψ(

√
t/2)

√
t

2
+O(1)

)
− 2

(
t3/2

24
− ψ(

√
t/2)

t

4
+O(

√
t)

)

=
t3/2

24
+
(
−1

8
− 1

4
ψ

(√
t

2

))
t+O(

√
t).

For Ao we set y = 2y′ − 1 and x = 2x′ − 1 to get:
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Ao =
∑

y≤√
t,y /∈2Z

y
∑

x/∈2Z,y<x≤√
t

1 =
∑

y≤(√t+1)/2

(2y − 1)
∑

y<x≤(√t+1)/2

1

=
∑

y≤(√t+1)/2

(2y − 1)
(
[(
√
t+ 1)/2]− y

)
= −[(

√
t+ 1)/2]2 +

(
2[(

√
t+ 1)/2] + 1

) ∑
y≤(√t+1)/2

y −
∑

y≤(√t+1)/2

2y2.

Using (2.2) again we get

Ao =
t3/2

24
+
(
−1

8
− 1

4
ψ

(√
t+ 1
2

))
t+O(

√
t).(2.5)

We now compute on the horn-shaped region
√
t < x ≤ t/y:

Be =
∑

y≤√
t,y∈2Z

y
∑

x∈2Z,√t<x≤t/y
1 = 2

∑
y≤√

t/2

y
∑

√
t/2<x≤t/(4y)

1

= 2
∑

y≤√
t/2

y
(
[t/(4y)]− [

√
t/2]

)

= 2
∑

y≤√
t/2

y

(
t

4y
− ψ(t/(4y))−

√
t

2
+ ψ(

√
t/2)

)

=
t

2

∑
y≤√

t/2

1 + 2
(
ψ(

√
t/2)−

√
t

2

) ∑
y≤√

t/2

y − 2
∑

y≤√
t/2

yψ

(
t

4y

)
.

We set

E1(t) = 2
∑

y≤√
t/2

yψ(t/(4y)),(2.6)

and use (2.2) to get

Be =
t3/2

8
+
(
−1

4
+

1
4
ψ(

√
t/2)

)
t− E1(t) +O(

√
t).(2.7)

For Bo we substitute x = 2x′ − 1 and y = 2y′ − 1 and get:
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Bo =
∑

y≤√
t,y /∈2Z

y
∑

√
t<x≤t/y,x/∈2Z

1

=
∑

y≤(√t+1)/2

(2y − 1)
∑

(
√
t+1)/2<x≤t/(2(2y−1))+1/2

1

=
∑

y≤(√t+1)/2

(2y − 1)
(
[t/(2(2y − 1)) + 1/2]− [(

√
t+ 1)/2]

)

=
t

2
[(
√
t+ 1)/2] +

(
ψ

(√
t+ 1
2

)
−

√
t

2

) ∑
y≤(√t+1)/2

(2y − 1)− E2(t)

where we set

E2(t) =
∑

y≤(√t+1)/2

(2y − 1)ψ
(

t

2(2y − 1)
+ 1/2

)
.(2.8)

Finally we get

Bo =
t3/2

8
+

1
4
ψ

(√
t+ 1
2

)
t− E2(t) +O(

√
t).(2.9)

Remark 2.1. The main term asymptotics for the standard lattice
Z
2 and the lattice L are consistent, i.e., the main term in Ao + Ae is

half the main term of A and so is the main term in Bo + Be and B.
However, this is not true for the term involving t1 in Ao +Ae and A.

Using Van der Corput’s method we will prove that

max(|E(t)|, |E1(t)|, |E2(t)|) � t5/6+ε.(2.10)

Then

NL(t) = Ao +Ae +Bo +Be =
t3/2

3
− t

2
− E1(t)− E2(t) +O(

√
t).

(2.11)

Subtracting (2.11) from (2.4) gives

t3/2

3
− t

4
+ E(t)− E1(t)− E2(t) +O(

√
t).
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Now we can count the eigenvalues of ∆ on M that are of Type II. Each
comes with multiplicity 2c, so we double the difference of the two results
and we notice that t = λ/(2π). This gives

NII(λ) = 2
(
λ

2π

)3/2 1
3
− 2

1
4
λ

2π
+O(λ5/6+ε).

On the other hand the eigenvalues of Type I give

NI(λ) =
λ

4π
+O(λ1/2),

since the corresponding torus has area 1. We see that the λ terms cancel
and we get as improvement in the Weyl Law R(λ) � λ5/6+ε.

2.1 Application of Van der Corput’s method

For simplicity we show only the bound E1(t) � t5/6 log t. The bound
for E(t) and E2(t) is proved similarly. A summation by parts gives

E1(t) =
√
t

√
t/2∑

n=1

ψ

(
t

4n

)
−
∫ √

t/2

1

∑
n≤x

ψ

(
t

4n

)
dx.(2.12)

We need to show that the sums in (2.12) are � t1/3 log t for x ≤ √
t.

The main point in Van der Corput’s method can be summarized in the
following proposition, see [9, Satz 1, p. 41]:

Proposition 2.2. Let f(u) be a twice-differentiable function on
the interval [a, b] and satisfies either f ′′(u) ≥ λ for all u ∈ [a, b], or,
f ′′(u) ≤ −λ for all u ∈ [a, b], where 0 < λ ≤ 1. Then∑

a≤l≤b
ψ(f(l)) � |f ′(b)− f ′(a)|λ−2/3 + λ−1/2,

with the implied constants being absolute.

We set f(u) = t/(4u), so that f ′(u) = −t/(4u2) and f ′′(u) =
t/(2u3) ≥ t/(2b3) for a ≤ u ≤ b. Proposition 2.2 gives for t/(2b3) ≤ 1

∑
a≤m≤b

ψ

(
t

4m

)
�
(

t

4a2
− t

4b2

)(
t

2b3

)−2/3
+
(

t

2b3

)−1/2
(2.13)

� t1/3(a−2 − b−2)b2 + t−1/2b3/2.
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We choose L to be the largest integer with 2−Lx ≥ t1/3 ≥ x2/3, i.e.,
L ≤ [log x/(3 log 2)]. In particular L � log x � log t. We have, using a
dyadic decomposition,

∑
n≤x

ψ

(
t

4n

)
(2.14)

=
∑

n≤2−Lx

ψ

(
t

4n

)
+

L−1∑
l=0

∑
2−l−1x≤n≤2−lx

ψ

(
t

4n

)
+O(L)

= O(2−Lx) +
L−1∑
l=0

∑
2−l−1x≤n≤2−lx

ψ

(
t

4n

)
+O(L)

� t1/3 +
L∑
l=1

(
t1/3

(
(2−lx)2

2−l−1x)2
− 1
)

+ t−1/22−3l/2t3/4
)

+ log t

� t1/3 log t.

using (2.13) to estimate the inner sum in the third line of (2.14). Also
we used that

λ =
t

2b3
=

t

2(2−lx)3
≤ t

2(t1/3)3
≤ 1

2
≤ 1.

Remark 2.3. The conjectural best bound is∑
n≤√

t

ψ(t/n) � t1/4+ε,

which is equivalent to the conjectured result for the divisor problem.
This would follow from the following estimate on exponential sums, see
[17, p. 57-59]: For [a, b] ⊂ [N, 2N ], T ≥ N2, we have

b∑
n=a

eT/n �
(
T

N2

)ε
N1/2+ε.

This would be an application of Conjecture 2 in [17, p. 59] stating that
(ε, 1/2 + ε) is an exponent pair. The relation with the function ψ(u)
comes through the Fourier series ψ(u) = −∑k �=0 exp(2πiku)/(2πik).
Equation (2.12) would imply by the same method that E1(t) � t3/4+ε.
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Figure 3: The lattice points contributing to Type II eigenvalues, λ =
16π2.

3. Probabilistic results: Proof of Theorem 1.3.

We consider now the Heisenberg manifolds (Γ1 \ H1, g(�u)), where
g(�u) is a perturbation of the metric given by the identity matrix. For
this metric the lattice points that contribute to the spectral counting
function of Type II eigenvaluesNII(λ) lie below the hyperbola 2πy(2πy+
x) = λ and x is an odd integer, while c = y > 0. For λ = 16π2 ≈ 157.9
these points are shown in Figure 3.

3.1 Averaged density of states

In this section we give an asymptotic estimate for the averaged density
of states of the eigenvalues, λj , j = 1, 2, ... of the Laplacian ∆ on a
Heisenberg manifold, M(�u) = (Γ \H1, g(�u)). We put �

−1 =
√
λ. Most

of our estimates will be given in terms of � but the reader should have
no difficulty in expressing them in terms of λ. We define the average
density of states as follows:

AV(φ) =
∞∑
j=1

∫
I3
φ(λj(�u)− λ) d�u(3.1)

= AV1(φ) + AV2(φ),
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where,

AV1(φ) := �

∑
m∈Z

∑
n∈Z

∫
I3

∫
R

eis[H(m�,n�;�u)−1]/� φ̌(�s) ds d�u,(3.2)

AV2(φ) := �

∑
c∈Z+

2c
∑
k∈Z+

∫
I3

∫
R

eis[µ(c,k,�;�u)−1]/� φ̌(�s) ds d�u.

Here

H(m,n; �u) = 4π2(u1m2 + u2n
2), µ(c, k, �; �u) = �

2µ(c, k).

In (3.2), we assume that φ is even, belongs to the Schwartz space S(R)
and its Fourier transform φ̌ ∈ C∞

0 (R). Equation (3.2) follows from the
Fourier inversion formula. The density AV(φ) is a function of λ, or,
equivalently, � and we are interested in estimating it as � → 0. For
AV1(φ) the estimation was achieved in [18, Prop. 2.1]. We quote the
result:

|AV1(φ; �)| = Oδ(�−δ).(3.3)

Next, we turn to the estimate for AV2(φ; �) and use the same sort of
spectral splitting and integration by parts argument as for AV1(φ; �).
We define

dρ02(φ, �u; �) := �

�
−1−δ∑
c

�
−2−δ∑
k

2c
∫

R

eis[µ(c,k,�,�u)−1]/�ζ(s)φ̌(�s) ds ,

and

dρ+2 (φ, �u; �) := �

�
−1−δ∑
c

�
−2−δ∑
k

2c
∫

R

eis[µ(c,k,�,�u)−1]/�(1− ζ(s))φ̌(�s) ds,

where ζ(s) is equal to 1 close to 0 and is in C∞
0 (R). We also set

dρ02(φ; �) =
∫
I3
dρ02(φ, �u; �) d�u, dρ+2 (φ; �) =

∫
I3
dρ+2 (φ, �u; �) d�u.

We split AV2(φ; �) = dρ02(φ; �) + dρ+2 (φ; �).
Using a standard stationary phase argument as in [21, Lemma 5.1]

we get

dρ02(φ; �u) =
1

6π2
vol(M(�u)) φ̌(0)�−1 +O(1)(3.4)
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uniformly in �u ∈ I3.
Integration by parts in u3 implies the estimate (up to O(�∞) errors)

dρ+2 (φ; �)(3.5)

= �

�
−2−δ∑
k=1

�
−1/2−δ∑
c=1

2πc
∫
I3

∫
R

eis[µ(c,k,�)−1]/�φ̌(�s)(1− ζ(s)) ds d�u.

Making the change of variables V = u3, U = u1u2 and integrating by
parts in U gives

dρ+2 (φ; �) � �

�
−1/2−δ∑
c=1

�
−2−δ∑
k≥1

�
−1
( c

ck

)∫
R

1− ζ(s)
s

ds(3.6)

� �
−1/2−δ| log �|2.

Thus, by combining (3.3) and (3.6), we have proved:

Proposition 3.1. Let φ ∈ S(R) with φ̌ ∈ C∞
0 (R). Then, given

the three-dimensional parameter space of Heisenberg manifolds M(�u),
we have that for � sufficiently small and any δ > 0,

AV(φ; �) =
1

6π2

∫
I3

vol(M(�u))d�uφ̌(0)�−1 +Oδ(�−1/2−δ).

3.2 Mean-square density of states: upper bounds

The mean square density of states is given by the expression

MS(φ) =
∫
I3

∣∣∣∣dρ(φ; �u, �)− 1
6π2

vol(M(�u))φ̌(0)�−1
∣∣∣∣2 d�u

(3.7)

=
∫
I3
|dρ+1 (φ; �u, �) + dρ+2 (φ; �u, �)|2 d�u + O(1)||dρ+1 + dρ+2 ||L2 .

So it suffices to prove the estimate ||dρ+1 + dρ+2 ||L2 � �
−1−δ. By intro-

ducing χ(y) a function which is ≥ 1 on [1 − ε, 1 + ε] and with Fourier
transform χ̂ of compact support, we are thus reduced to estimating∫

I3
|dρ+1 (φ; �u, �)|2 d�u(3.8)

� �
2
∑
mi,ni

∫
R5

eiΦ(m1,n1,m2,n2;�s,�)/� a(�s; �)χ(�u) d�sd�u,
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and ∫
I3
|dρ+2 (φ; �u, �)|2 d�u(3.9)

� �
2
∑
ci,ki

c1c2

∫
R5

eiΨ(c1,k1,c2,k2;�s,�)/� a(�s; �)χ(�u) d�sd�u.

To simplify the writing in (3.8) and (3.9), we have put

Φ(m1, n1,m2, n2;�s, �) = H(m1�, n1�; �u) s1 −H(m2�, n2�; �u) s2,

Ψ(c1, k1, c2, k2;�s, �) = µ(c1, k1, �; �u) s1 − µ(c2, k2, �; �u) s2,

and

a(�s; �) := (1− ζ(s1)) (1− ζ(s2)) φ̌(�s1) φ̌(�s2) ei(s2−s1)/�.

In [18, Prop. 3.2] we showed that for any δ > 0,∫
I3
|dρ+1 (φ; �u, �)|2 d�u = Oδ(�−δ).(3.10)

Notice that H(m,n; �u) depends only on u1, u2, so the integral in the
variable u3 is not essential in estimations. Thus, we are left with esti-
mating the integral

J(φ) =
∫
I3
|dρ+2 (φ; �u, �)|2 d�u.

To do this, we fix δ > 0 and consider the set

Ω(c1, k1, c2, k2; �) := {u ∈ I3; |µ(cj , kj , �; �u)− 1| ≤ �
1−δ ; j = 1, 2 }.

By an integration by parts in the s1, s2 variables in (3.9), it suffices
to assume, modulo O(�∞) errors, that we only sum over quadruples
(c1, k1, c2, k2) with the property that for � ≤ �0,

Ω(c1, k1, c2, k2; �) �= ∅.

So, we have that J(φ) =
∫
I3 |dρ+2 (φ; �u, �)|2 d�u is bounded by

C�
2

∑
Ω(c1,k1,c2,k2;�) �=∅

c1c2

∫
R5

eiΨ(c1,k1,c2,k2;�s,�)/�a(�s; �)χ(�u) d�sd�u+O(�∞).
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By making the change of variables u = u3, v = u1u2, w = u1 in (3.9) and
by integrating by parts in u, v, we can assume, modulo O(�∞) errors,
that there exists (s1, s2) ∈ supp(a) such that

∂

∂u
Ψ(c1, k1, c2, k2;�s, �) � �

1−δ,
∂

∂v
Ψ(c1, k1, c2, k2;�s, �) � �

1−δ.

(3.11)

Written out explicitly, the inequality in (3.11) reads

|c1�|2 s1 − |c2�|2 s2 � �
1−δ(3.12)

(2k1 + 1)c1�2 s1 − (2k2 + 1)c2�2 s2 � �
1−δ,

Since min(|s1|, |s2|)  1 on supp a(�s; �), for a given (c1, k1, c2, k2) we
need to be able to solve (3.12) for some s1, s2 with min(|s1|, |s2|)  1.
By inverting the matrix equation in (3.12) using Cramer’s rule and using
the estimate max(c2j , cjkj) � �

−2−δ, we get

|c21c2(2k2 + 1) − c22c1(2k1 + 1)| � �
−3−3δ.(3.13)

On the other hand, the condition Ω(c1, k1, c2, k2; �) �= ∅ means that for
some u = u(c1, k1, c2, k2; �), v = v(c1, k1, c2, k2; �),

(u, v) · (4πc21, (2k1 + 1)c1) = �
−2 +O(�−1−δ)(3.14)

(u, v) · (4πc22, (2k2 + 1)c2) = �
−2 +O(�−1−δ),

where · is the standard inner product in R
2. Resubstituting (3.14) back

into (3.13) we get

|c1 − c2| � �
−1−δ

|c1|+ |c2| and |c1(2k1 + 1)− c2(2k2 + 1)| � �
−1−δ.

(3.15)

Thus

J(φ) �
(3.16)

�
2
∑
c2,k2

∑
c1∈β(c2,�)

c1c2
∑

k1∈γ(k2,c1,c2,�)

∫
R2

φ̌(�s1)φ̌(�s2)(1− ζ(s1))

· (1− ζ(s2))χ̂(�[s1c21 − s2c
2
2], �[s1(2k1 + 1)c1 − s2(2k2 + 1)c2]) d�s,



weyl’s law, heisenberg manifolds 473

where

β(c2, �) :=
{
c1; |c1 − c2| � �

−1−δ

|c1|+ |c2|
}
,(3.17)

and

γ(k2, c1, c2, �) :=
{
k1; |(2k1 + 1)c1 − (2k2 + 1)c2| � �

−1−δ
}
.(3.18)

We make the change of variables

S = �(c1(2k1 + 1)s1 − c2(2k2 + 1)s2), T = s1 + s2,

We notice that, since φ̌ has compact support, �(s1 + s2) � 1, which
gives T � �

−1. Equation (3.16) implies that |J(φ)| is bounded by

C�
2−1∑

c2,k2

∑
c1∈β(c2,�)

∑
k1∈γ(k2,c1,c2,�)

(
c1c2

c1k1 + c2k2

)∫
|S|�1

∫
|T |��−1

dSdT

(3.19)

� �
−δ ∑

c2,k2

∑
c1∈β(c2,�)

∑
k1∈γ(k2,c1,c2,�)

(
c1c2

c1k1 + c2k2

)
.

Ignoring the term c1k1 in the denominator of (3.19), one gets

|J(φ)| � �
−δ ∑

c2,k2

∑
c1∈β(c2,�)

∑
k1∈γ(k2,c1,c2,�)

c1
k2

(3.20)

� �
−δ ∑

c2,k2

∑
c1∈β(c2,�)

|γ(k2, c1, c2, �)| · c1
k2
,

where we denote by |A| the cardinality of a set A. From the definitions
of the sets β(c2, �) and γ(k2, c1, c2, �) in (3.17) and (3.18), it is clear
that

|γ(k2, c1, c2, �)| � �
−1−δ

c1
,

and

|β(c2, �)| � �
−1−δ

c2
.

So, from (3.20) it follows that∫
I3
|dρ+2 (φ; �u, �)|2 d�u(3.21)

� �
−δ

�
−1−δ∑
c2=1

�
−2−δ∑
k2=1

(
c1
k2

)
·
(

�
−1−δ

c1

)
·
(

�
−1−δ

c2

)
� �

−2−δ| log �|2 = Oδ(�−2−δ).
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Finally, by the Cauchy-Schwartz inequality and the estimates in (3.10)
and (3.21), ∫

I3
dρ+2 (φ; �u, �) · dρ+1 (φ; �u, �) d�u = Oδ(�−1−δ).

Consequently, we have proved:

Proposition 3.2. LetM(�u) be in the three-dimensional parameter
space of Heisenberg manifolds described in (1.3). Then, for any δ > 0,

MS(φ) :=
∫
I3
|dρ(φ; �u, �)− 1

6π2
vol(M(�u))φ̌(0)�−1|2 d�u = Oδ(�−2−δ).

3.3 The spectral decomposition: Proof of Theorem 1.3

Let φ ∈ S(R) with φ(λ) > 0, and φ̌ ∈ C∞
0 (R) with φ̌(0) = 1. We

start with a rescaled spectral decomposition used by Duistermaat and
Guillemin [8], but applied to the eigenvalues of ∆ rather than

√
∆. Tak-

ing into account this rescaling we will naturally encounter semiclassical
density of states on scales of order ∼ �

2 where �
−1 =

√
λ. Our starting

point is the following basic decomposition (see [8], [21]):∫ ∞

−∞

∫ λ

−∞
φ(x− λ′) dx dN(λ′; �u)(3.22)

=
∫
λ′≥λ+1

∫ λ

−∞
φ(x− λ′) dx dN(λ′; �u)

+
∫
|λ−λ′|<1

∫ λ

−∞
φ(x− λ′) dx dN(λ′; �u)

+
∫
λ′<λ−1

∫ ∞

−∞
φ(x− λ′) dx dN(λ′; �u)

−
∫
λ′≤λ−1

∫ ∞

λ
φ(x− λ′) dx dN(λ′; �u).

Since 1 =
∫∞
−∞ φ(s)ds, it follows that the third term on the right-hand

side of (3.22)∫
λ′<λ−1

∫ ∞

−∞
φ(x− λ′) dx dN(λ′; �u) = N(λ− 1; �u).

To estimate the other terms in (3.22), we will need the following propo-
sition:
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Proposition 3.3. Let λj(�u) ∈ Spec(M(�u)). Then, for any φ ∈
S(R) as above, we have that∫

I3

∣∣∣∣∫ ∞

−∞

∫ λ

−∞
φ(x− λ′) dx dN(λ′; �u)− 1

6π2
λ3/2 vol(M(�u))

∣∣∣∣2 d�u
= Oδ(λ3/2+δ).

Proof. The proof is similar to [18, Prop. 4.1]. We only show the
necessary changes here.

Put �
−1 =

√
λ and consider the rescaled operator H := �

2∆ with
eigenvalues λj(�) = �

2λj : j = 1, 2, .... As in [18, Eq. (4.4)], we see
that, modulo O(1) errors, we are reduced to estimating

I(�u, �) = �
−2

∞∑
j=1

∫ 1

−1
φ

(
λj(�; �u)− Λ

�2

)
dΛ.(3.23)

Next, we split integral in (3.23) into two pieces corresponding to the
zero and nontrivial period spectrum: Let ζ ∈ C∞

0 (R) be nonnegative,
equal to 1 close to 0. Its support should be small enough. Then,

I(�u, �) = I01 (�u, �) + I+1 (�u, �) + I02 (�u, �) + I+2 (�u, �),(3.24)

where

I01 (�u, �) = �
−1 ∑

m,n∈Z

∫ 1

−1

∫ ∞

−∞
eis[H(m�,n�;�u)−Λ]/�ζ(s)φ̌(�s) ds dΛ,

and

I02 (�u, �) = �
−1 ∑

c,k≥0

∫ 1

−1

∫ ∞

−∞
eis[µ(c,k,�;�u)−Λ]/�ζ(s)φ̌(�s) ds dΛ,

and I+1 and I+2 are defined similarily by replacing the cutoff ζ(s) above
by 1 − ζ(s). First, by a fairly standard stationary phase argument, see
[21, Lemma 5.1]

I0(�u, �) =
1

6π2
vol(M(�u)) �

−3 +O(�−1).(3.25)

To prove Proposition 3.3, we need to estimate∫
I3
|I+(�u, �)|2 d�u =

∫
I3

∣∣∣I(�u, �)− I0(�u, �)
∣∣∣2 d�u

�
∫
I3

|I+1 (�u, �)|2 d�u+
∫
I3

|I+2 (�u, �)|2 d�u.



476 y.n. petridis & j.a. toth

We get

∫
I3
|I+(�u, �)|2d�u(3.26)

�
C�

−1−δ∑
mi,ni �=0

∫
eiΦ(m1,n1,m2,n2;�s,�)/�b(�s; �)

1
s1s2

d�sd�u

+
∑

ci,ki>0

c1c2

∫
eiΨ(c1,k1,c2,k2;�s,�)/� b(�s; �)

1
s1s2

d�sd�u+O(�∞),

with

b(�s; �) = (ei(−s1+s2)/� + ei(s1−s2)/� − ei(−s1−s2)/� − ei(s1+s2)/�)

· (1− ζ(s1))(1− ζ(s2))φ̌(�s1)φ̌(�s2)χ(u1)χ(u2).

Since

s1s2 ≥ 1
2
(s1 + s2) when min(s1, s2) ≥ 1,

it follows by the argument in Proposition 3.2 that the right-hand side
in (3.26) is

� �
−2−2δ ∑

m2,n2

1
m2n2

min
(

1
�m22

,
1

�n22

)∫
C<|T |��−1

dT

T

(3.27)

+ �
−1∑

c2

∑
c1∈β(c2,�)

∑
k2

∑
k1∈γ(k2,c1,c2,�)

(
c1c2

c1k1 + c2k2

)∫
C<|T |��−1

dT

T

� �
−1−δ + �

−3−δ.

The sets β(m2, �) and γ(n2, �) are defined in (3.17), (3.18) and the argu-
ment follows as in (3.19) with the only change being the appearance of
the denominator |s1|+ |s2|. This completes the proof of Proposition 3.3.

q.e.d.

By reshuffling the terms in the spectral decomposition and integrat-
ing over the parameters �u ∈ I3, we get:
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∫
I3
|N(λ− 1; �u)− I0(�u, �) |2 d�u(3.28)

�
∫
I2

|I+1 (�u, �) + I+2 (�u, �)|2d�u

+
∫
I3

∣∣∣∣∫
λ′≥λ+1

∫ λ

−∞
φ(x− λ′) dx dN(λ′; �u)

∣∣∣∣2 d�u
+
∫
I3

∣∣∣∣∣
∫
|λ−λ′|<1

∫ λ

−∞
φ(x− λ′) dx dN(λ′; �u)

∣∣∣∣∣
2

d�u

+
∫
I3

∣∣∣∣∫
λ′≤λ−1

∫ ∞

λ
φ(x− λ′) dx dN(λ′; �u)

∣∣∣∣2 d�u
= T0 + T1 + T2 + T3.

From Proposition 3.3 we have that for any δ > 0,

T0 =
∫
I3

|I+1 (�u, �) + I+2 (�u, �)|2 d�u = Oδ(�−3−δ).

Consequently, it remains to estimate the terms T1, T2, T3 on the right-
hand side of the inequality (3.28). This is accomplished by exactly the
same argument as in [18, (4.12) and (4.15)]. The end result is that each
of these three terms can be estimated by the mean-square density of
states in Proposition 3.2: that is for j = 1, 2, 3, and any δ > 0,

Tj = Oδ(�−2−δ).

This completes the proof of Theorem 1.3. q.e.d.

4. Geometry of the geodesic flow

Consider the standard Heisenberg group, H1, and its quotient
Γ1 \H1. The Lie algebra H1 := TeH1 has a basis given by the left-
invariant differential one-forms:

α = dx, β = dy, γ = dz − x dy.(4.1)

Let ω be the canonical one-form on T ∗H1 and define the fiber momen-
tum coordinates corresponding to the basic vector fields ∂x, ∂y, ∂z in the
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usual way: px := ω(∂x), py := ω(∂y), pz := ω(∂z). It is straightforward
to check that

px = pα, pz = pγ , py = pβ − x pγ .(4.2)

The Hamiltonian for the geodesic flow is

H̃ =
1
2
(p2α + p2β + p2γ)(4.3)

and it is Liouville integrable (see [2], [20]). Indeed, one can use as
integrals in involution the functions

F = pγ and G = φ(pγ) sin 2π
(
pβ
pγ

− x

)
.

In the definition of G, the function φ ∈ C∞(R) is required to vanish to
infinite order at 0 to kill the singularity at pγ = 0 in the sine function.
So, one can take for example

φ(u) = exp(−u−2).

It is easily checked that the functions F,G,H are in involution and
have differential which are independent on a dense subset of T ∗M . No-
tice that the function G is C∞ but not real analytic. Even though the
geodesic flow on M is completely integrable, on the regular set of the
moment map, a routine computation (see for example [2]) shows the
geodesic flow restricts to two-dimensional isotropic sub-tori of the stan-
dard three-dimensional Lagrangian level sets. This fact suggests that
there may be large (> 3) dimensional periodic sets in T ∗M . As we will
now show, this is indeed the case.

The Hamilton equations for the geodesic flow in terms of the (x, y, z;
pα, pβ, pγ) coordinates on T ∗H1 are:

dx

dt
= pα,

dy

dt
= pβ,

dz

dt
= pγ + xpβ,

dpα
dt

= −pγ pβ, dpβ
dt

= pα pγ ,
dpγ
dt

= 0.
(4.4)

and we are interested in the solution curves to (4.4) on the cosphere
bundle H̃ = 1. From the last equation in (4.4) we get that

pγ(t) = pz(t) = c1(4.5)
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for some constant c1. Resubstituting (4.5) back into (4.4), we can easily
solve the resulting equations ṗα and ṗβ and get that

pα(t) = c2 cos(tc1) + c3 sin(tc1)(4.6)
pβ(t) = c2 sin(tc1)− c3 cos(tc1).

Here c2, c3 are additional constants satisfying c22 + c23 = 2 − c21 with
pα(0) = c2 and pβ(0) = −c3.

Since ẋ = pα and ẏ = pβ it then follows from (4.6) that

x(t) =
c2
c1

sin(tc1)− c3
c1

cos(tc1) +
c3
c1

+ x(0),(4.7)

y(t) = −c2
c1

cos(tc1)− c3
c1

sin(tc1) +
c2
c1

+ y(0).

Finally, resubstituting (4.7) and (4.6) back into the equation for ż gives:

z(t) =
(
c1 +

c22 + c23
2c1

)
t+

c23 − c22
4c21

sin(2c1t)− c2c3
c21

sin2(c1t)(4.8)

+
(
c3
c1

+ x(0)
)(

−c2
c1

cos(c1t)− c3
c1

sin(c1t)
)

+m

where z(0) = −(c3/c1 + x(0))(c2/c1) +m. We would like to determine
what conditions to impose on c1 to ensure that the geodesics

γ(t) := (x(t), y(t), z(t), pα(t), pβ(t), pγ(t))

on the level set {pz = c1} ∩ S∗M are all periodic. Since the solutions
to the equations (4.7) and (4.6) are all periodic of period (2π)/c1, to
ensure that z(t) closes up on the quotient manifold M we require that
for all t,

z

(
t+

2π
c1

)
− z(t) ∈ Z.(4.9)

Since c22 + c23 = 2− c21 this implies that

1
c21

+
1
2
∈ Z

2π
.(4.10)

We henceforth denote the discrete set of c1’s satisfying (4.10) by T .
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Proposition 4.1. Given c1 satisfying (4.10), the 4-dimensional
manifold

P (c1) := {(x, y, z, pα, pβ, pz), pz = c1} ∩ S∗M

consists of periodic geodesics of primitive period (2π)/c1. Moreover, this
set contains all the primitive periods of closed geodesics on the Heisen-
berg manifold, M = Γ1\H1, with metric given by the Hamiltonian (4.3).

Proof. The argument above shows that when c1 satisfies (4.10) all
the geodesics on P (c1) are periodic of primitive period (2π)/c1. To show
that these numbers include all possible primitive periods, we argue as
follows: By matrix multiplication, two points (x1, y1, z1), (x2, y2, z2) ∈
H1 are identified under Γ if and only if there exist k1, k2, k3 ∈ Z such
that:

x1 = x2 + k1(4.11)
y1 = y2 + k2

z1 = z2 + k3 + k1y2.

Fix c1, c2, c3. Then, the solution curves pα(t) and pβ(t) in (4.6) are
just circles of period (2π)/c1 and so, these numbers include all possible
periods. The coordinates x(t) and y(t) are automatically periodic with
primitive period T = (2π)/c1. So, to determine the conditions on c1
that ensure periodicity, we only need to consider the last congruence for
z(t) in (4.11). Since cos t and sin t are continuous in t ∈ R it necessar-
ily follows that k1 = 0 and so condition (4.10) is necessary as well as
sufficient to guarantee periodicity. q.e.d.

5. Spectral averaging: Proof of Theorem 1.4

We follow a simple trace-formula argument of Sarnak [19, Lemma
5.1], but localized near a period T0 = (2π)/c1 where c1 satisfies (4.10).
More precisely, let φ ∈ S(R) with φ̌ ∈ C∞

0 (R), φ̌(T0) = 1 with

supp φ̌ ∩ T = T0.

We set N1(s) = N(s2) and R1(s) = R(s2), X =
√
λ. It is easy to check

that P (c1) is clean [8] and since dimP (c1) = 4, it then follows from the
wave-trace formula [8], [13] that:∫ ∞

−∞
φ(X − s) dN1(s) ∼X→∞

∞∑
j=0

cj X
3/2−j .(5.1)
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Moreover, since the support of φ̌ is away from s = 0,∫ ∞

−∞
φ(X − s) dN1(s) =

∫ ∞

−∞
φ(X − s) dR1(s)(5.2)

= −
∫ ∞

−∞
φ′(X − s)R1(s) ds.

Finally, using the fact that φ′ is a Schwartz function and R1(s) = O(s2)
by the Hörmander bound, we get from (5.1) and (5.2) that:

1
X

∫ 2X

X
|R1(s)| ds  X3/2.(5.3)

The change of variables τ = s2 suffices to get the result of Theorem 1.4.
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mutent. II. Le cas intégrable, Math. Z. 171(1) (1980) 51–73, Zbl 0478.35073.

[6] D.M. DeTurck & C. Gordon, Isospectral deformations. I. Riemannian structures on
two-step nilspaces, Comm. Pure Appl. Math. 40(3) (1987) 367–387, MR 88m:58186,
Zbl 0649.53025.

[7] D.M. DeTurck, H. Gluck, C. Gordon & D. Webb, The inaudible geometry of nil-
manifolds, Invent. Math. 111(2) (1993) 271–284, MR 93k:58222, Zbl 0779.53026.

[8] J.J. Duistermaat & V. Guillemin, The spectrum of positive elliptic operators and
periodic bicharacteristics, Invent. Math. 29(1) (1975) 39–79, MR 53 #9307,
Zbl 0307.35071.
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